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ABSTRACT 
 
We expose the foundations of formal semantics for the description language 
of a given domain. It is described as a juxtaposition of two languages, the 
object language used to describe the objects of the domain and the property 
language that is used to describe the properties of these objects. Both of the 
languages are based on the syntax of first order predicate logic. We then 
consider the description of a domain in terms of a hierarchical 
classification in this framework. We define the notions of ontology and 
taxonomy, explain how they are related and how taxonomies impose logical 
structures on the object language that mimics a semantic and endows the 
language with reasoning power.  
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1 Introduction 
 
Consider the sentences “the water is 5°C” and “5°C is a temperature”. The 
first sentence is an empirical statement about a system named by the word 
“water”. It is a sentence formulated in the object language for a domain to 
which water belongs.  The word “5°C” is a predicate that can apply to 
water. On the other hand, the sentence “5°C is a temperature” is a statement 
about the quantity 5°C which refers to a property of the water. It is a 
statement in a property language that applies to the description of properties 
of the systems of the domain. A description language for the domain is a 
juxtaposition of these two languages1. The aim of this paper is to analyse 
and describe the semantic structure of this language and to apply it to the 
definition of a hierarchical classification and the corresponding taxonomy.   
 
The philosophical basis for this work is provided by Tarski [Tarski 1944, 
1985] and Wittgenstein [Wittgenstein 1922, 1953]. We apply Tarski’s use 
of metalanguage to describe the semantic for a language, and we adhere to 
Wittgenstein’s metaphysical theory and picture theory from Tractatus in the 
interpretation of what a model is. The picture theory is an expression for the 
hypothesis that a sentence about reality is true if it pictures an existing state 
of affairs. More precisely, a sentence shows the “logical form” of reality by 
mirroring it, and it implicitly claims that it expresses a statement about 
reality. In addition, one needs the insights from Philosophical Investigations 
as a foundation on which to base the description of properties of objects. In 
Investigations Wittgenstein supplements the standard definition of meaning 
by also referring to how words and expressions acquire meaning through 
use; for example, words acquire meaning not only through extension, but 
also through how they enter into true atomic sentences and valid inferences. 
These ideas are taken up and partially justified by the results of cognitive 
linguistics [Croft et al. 2006]. They explain the creative aspects of the 
mathematical method. Thus, the insights from Tractatus concern the object 
language and those of Investigations, the property language. 
 
Tarski’s method is to view the relation between the domain of description 
and the language from the outside. He gives an explicit account of the 
relation using a second order language, a “meta-language”. The meta-
language contains the words and sentences of the language but in addition it 
contains names for these and predicates characterising them, like meaning 
and truth. This makes it possible to speak about sentences as well as the 

                                                 
1 This is also the structure of Description Logic  (Baader et al. [2003]) where the two 
languages are denoted as ABox and TBox . Its origin is the need to make sentences that 
quantify over the objects and also over the property, though not in the same sentences. 
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objects and relations they refer to. In particular, he defines the notion of 
truth as follows (Tarski [1944]): 
 

“Consider the sentence “snow is white”. We ask the question under 
what conditions this sentence is true or false. It seems clear that if we 
base ourselves on the classical conception of truth, we shall say that 
the sentence is true if snow is white, and that it is false if snow is not 
white. Thus if the definition of truth is to conform to our conception, 
it must imply the following equivalence: 
 
The sentence “snow is white” is true if, and only if snow is white.” 

 
This sentence is formulated in an object language endowed with an 
interpretation that gives meaning to the term “snow” and the predicate 
“white”. The standard way of analysing the semantic of a language is to 
define the interpretation as a couple (D, I) where D denotes a domain2 and I 
is an ‘interpretation function’3. The interpretation function assigns 
appropriate extensions to the non-logical terms. Thus, if n is a name then 
I(n) is a system or a set of systems referred to by the same name; if p is a 1-
place predicate then I(p) is the set of systems to which the predicate p 
applies.  
 
The interpretation function I points from the language to the domain. We 
have chosen to consider the alternative that the ‘interpretation function’ is 
pointing the other way, from the domain to the language. This makes it 
possible to employ the mathematical notion of maps to define 
interpretations. This choice corresponds to Wittgenstein’s picture theory. It 
is also the point of view that has been adopted in physics and is reflected in 
the structure of theories of physics (Piron [1973]). 
 
Maps are therefore key elements in the meta-language considered in this 
paper. A map is used to express the naming of systems. Maps are also used 
to express assignments of predicates to systems. They appear as symbolic 
expressions for observations. Together these maps characterise the 
semantics of a description language for the domain D and they are used to 
define truth. Maps are also simulating the abstraction of properties from the 
systems and the naming of the properties in terms of predicates.  
 
It follows from the above outline that considering a sentence we are 
operating on three levels, the object described, the claim expressed by the 

                                                 
2 The elements of a domain of description are called systems. 
3 The interpretation function is not a function (or map) in the mathematical sense of a 
function. It does not necessarily have unique values. 



 4

sentence and the characterisation of the claim. This appears more clearly in 
the following reformulation of Tarski’s definition of truth 
 

the sentence “snow is white” is true if and only if there exists an 
object that carries the name “snow” and to which the predicate 
“white” applies. 

 
The meta-language therefore also needs symbols for the objects of the 
domain and for the sentences as objects. Sentences as objects are named by 
applying quotation marks as in ”snow is white”. “ “ thus symbolises a 
naming map for sentences. 
 
In this paper we restrict ourselves to the study of 1-ary predicates and 
classifications. We will discuss the case of 2-ary predicates and 
categorisation in a forthcoming paper.  
 
 

2 The Object Language and Meta-language 
 
The object language L(D;N,P) for a domain D is an interpretation based on 
D of a first order predicate logic L(N,P). It is defined by sets of maps 
relating systems of the domain to names and predicates.  
 
Naming is symbolised by a map4 
 

( )ddN;D: νν a→  
 
from the domain D to the set of names N, that to a system d associates the 
name n by ν d( )= n. ν d( )= n is thus a sentence in a meta-language 
ML(D;N,P).  It expresses that the system d is named n.  
 
A fact about a system d is expressed in the description language L(D;N,P) 
by an atomic sentence pν d( ) that is the association of a predicate p to the 
name n =ν d( ) of the system. It reads “n is p”. An atomic sentence can also 
be represented as a map 
 
 ( )nnP;N: ππ a→  
 
π n( ) is thus a synonymous formulation of pn if and only if π n( )= p since it 
relates n and p.  
 
                                                 
4 See appendix 
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The naming map for the sentences in a the meta-language is5 
 
 ( ) ( )ssS;PN,D;L: σσ a→  
 
Sentences associating the name of a sentence in L(D;N,P) to a predicate 
characterising the sentence are atomic sentences in the meta-language.  
 
A sentence is characterised by whether it is true or not. True t and false f are 
therefore predicates in the meta-language. The claim that a sentence s is true 
is expressed by the atomic sentence tσ s( ) which itself might be either true 
or false. This attempt to capture truth thus leads to an infinite regress. 
However, we may connect truth to the verification or falsification by 
observation of the claim expressed by the sentence. The map 
 
 τ : L D;N,P( ) → t,f{ } 
 
that to a sentence assigns one of the alternatives true or false according to 
whether what the sentence claims is or is not the case, simulates the 
procedure of verification.  The condition 
 
 “ tσ s( ) is true” if and only if τ s( )= t  
 
replaces the infinite regress by referring truth to ‘empirical’ verification. 
 
If the sentence pν d( ) is true then the predicate p is said to apply to the 
system d.  
 
The meaning < n > of a name n is the system that is referred to by the name 
n, 
 

( )dνnifonlyandifdn ==><  
 
The meaning < p > of a predicate p is the set of systems to which a predicate 
applies 
 
 < p >= d | τ pν d( )( )= t{ } 
 
d is said to satisfy the condition ( )( ) tdp =ντ  if and only if the equality 
holds, i.e. “ ( )dpν ” is true.  
 
                                                 
5 The standard notation for σ s( ) is “s”. 
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The words “truth”, “meaning” and “satisfaction” belong to the meta-
language ML(D;N,P). They are implicitly defined by the above definitions. 
It is these implicit definitions that together with ‘empirical’ verifications 
gives them meaning. The source is thus the meaning of “true” as the set of 
all true sentences of L(D;N,P), 
 
 < t >= s |τ s( )= t and s∈ L D;N,P( ){ } 
 
We will distinguish between two kinds of 1-place predicates. Examples of 
predicates of the first kind are the predicates denoting colours, weights, 
positions etc. Examples of predicates of the second kind are philosopher, 
human and Norwegian. The predicates of the second kind are definable in 
terms of predicates of the first kind (see §5). Only predicates of the first 
kind appear in atomic sentences. 
 
Predicates of the first kind can be classified according to mutual 
exclusiveness. Two predicates that are not simultaneously applicable to a 
system belong to the same class. For each class there exists a map 
 
 ( )ddP;D: δδ a→  
 
These maps are called observables. An observable δ  is uniquely defined by 
a choice of class as range Rδ  and the condition that ( )dp δ=  for p ∈ Rδ  and 
where p applies to d. In terms of the observables, the meaning of a predicate 
is therefore 
 
 < p >= d | δ d( )= p{ } 
 
The observables simulate acts of observations. Each observable is 
associated with a measuring device and a set of instructions that leads to a 
result that is represented by one of the predicates in its range. In terms of the 
observables, truth for atomic sentences is characterised as follows 
 

“pn” is true if and only if there exists a system d and observable δ  
such that n =ν d( ) and p = δ d( ) 

 
 

3 Operational Definitions 
 
The observables simulate observations and thus express the empirical 
relations that constitute the interpretation of L(N,P) based on D.  
Accordingly, they constitute the empirical foundation for the object 
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language and its interpretation. The basis for the interpretation is the global 
condition of truth of the atomic sentences. This condition is expressed by 
the commutativity of the diagrams 
 

DD

PN

≡
↑↑

→

δν

π

  i.e. π ν d( )( )= δ d( ), ∀d ∈ D                       (1) 

 
The maps are related to the particular domain D and its description. Notice 
that the condition of commutativity fixes the choice of π  for each δ .  For 
each δ  there is a unique π  that has the range Rδ . 
 
An observation is not a simple act of seeing. It involves a “measuring” or 
“observational” device, a manual of instructions for the manipulations of the 
device, the application of the device according to the manual and the 
recording and interpretation of the result. These elements are not 
independent. They constitute a logically consistent wholeness.  
 
The complexity of an actual observation depends on how directly a system 
or a phenomenon can be observed. However, this should not obscure the 
fact that even direct observations that appear as automatic and unconscious 
actions are not simple. Thus, the observation of the number of eggs in a 
basket consists of moving the sight from one egg to the next and each time 
counting one more. The final result is interpreted as a number in the system 
of natural numbers that is kept as a standard of measure.   
 
The determination of the position of a system in space is a slightly more 
intricate example. It is based on the choice of a reference point, a set of 
three orthogonal axes crossing at the reference point and the choice of a 
measure of length. The position of the system is then given by three 
numbers measuring the number of unit lengths from the reference point to 
the orthogonal projections of the position of the system on the axes. The 
measures are determined by lying measuring rods of unit length one after 
the other without spacing until one reaches the projection point, and then 
recording the number of rods counted.  
 
For both of the examples the records are numerical values. The observation 
of colour of a system is an example where this is not the case. The 
measuring device is then a colour chart where each of the colours is named 
and the rule of application is to compare the colour of the system with the 
colours on the colour chart. If, for instance, the colour of the system is 
identical to the colour named “red” on the chart, then the colour of the 
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system is taken to be red. 
 
In spite of the difference of complexity between these examples it is easy to 
see that they share some common characteristics. The observations 
described all involve the use of a scale based on a standard of measure and 
the result follows from a comparison between a representation of the 
standard and the system. Moreover, the definition of the standard of 
measure determines the interpretation of the result. These means are 
resumed in an operational definition that is an account of the applied 
standard of measure and the instructions to be performed to make an 
observation. Each observable is associated with an operational definition. It 
‘describes’ the corresponding measurements. 
 
 

4 The Property Language 
 
4.1 Properties 
1-place predicates of the first kind refer to properties of systems. A property 
is something in terms of which a system manifests itself and is observed, 
and by means of which it is characterised and identified. The properties of a 
system are thus in a natural way ‘mentally’ separated from the system. The 
separation is made possible by the fact that the ‘same’ property is possessed 
by more than one system. 
 
To an observer a system appears as a collection of properties. The 
separation is expressed by the commutativity of the following diagrams 
 

P ≡ P
↑δ ↑ρ
D → E

ε

 i.e. δ d( )= ρ ε d( )( ), ∀d ∈ D   (2) 

 
Here E represents the set of properties of the systems in D, ε is a map that 
simulates the mental separation of properties from the systems and ρ  stands 
for a map that to a property associates the predicate referring to it. It is an 
abstract construction and it is therefore a theoretical task to characterise E. 
Thus, it might be that E is a natural extension of the set of properties that 
can be associated to the systems of the domain and that this is reflected in 
the set of predicates available in the language. The pluralities and the natural 
numbers are an example. 
 
In the case of coloured systems for example, the condition of commutativity 
means that if a system appears as red then it possesses the property redness. 



 9

It is assumed that each 1-place predicate refers to a unique property. 
 
4.2 Axiomatic 
The maps ( )eeP;E: ρρ a→  can be considered as naming maps for the 
properties. But the properties do also possess relations that impose a 
structure on E and that are expressed as relations among the predicates in P. 
To describe them we need a set of predicates Q, a logic L(P,Q), a formal 
system L(E;P,Q) and a formal language L(D,E;P,Q), the property language. 
The formal system is associated with the diagrams 
 

ϕ
P → Q
↑ρ ↑χ

E ≡ E

  i.e. ϕ ρ e( )( )= χ e( )    (3) 

 
that is analogous to diagrams (1).  
 
From the set of sentences in L(E;P,Q) describing E we can select a subset, 
the axioms, from which all the other sentences, the theorems, can be derived 
by means of logical inferences (Blanché [1955]). Some of the axioms are 
directly related to the operational definitions and can be established on the 
basis of these. They are supplemented by other axioms that are expressing 
‘properties’ of the properties. These are referred to as laws. 
 
The set of axioms contains the “full” information of the structure of E. They 
are implicit partial definitions of the concepts considered. They do not give 
the full meaning of these concepts, but limit their range of possible 
interpretations. Only by choosing a domain D and interpret some of the 
concepts by means of the commutative diagram  
 

 

ϕ
P → Q
↑ρ ↑χ

D→ E ≡ E
ε

 

 
will the exact meaning of all the concepts involved be determined. The 
diagram thus expresses the semantic structure of the property language. 
 
Remark: The elements of the diagram (3) separated from any relation to a 
domain D and considered in their own rights, constitute a mathematical 
theory. The mathematical theories of geometrical spaces or manifolds are 
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prominent examples A manifold (space) is defined as an abstract entity in 
terms of a given class of coordinatisations, i.e. by diagrams like 
 
 ( )eeP;E: ρρ a→  
 
(Boothby [1973], p 52). D is then the source of an interpretation of the 
mathematical theory. 
 
Example: Arithmetic 
The properties of and relations between pluralities are expressed by means 
of the Peano axioms for arithmetic that read as follows6: 
 

1. o is a number7 
2. the successor8 of a number is a number 
3. no two numbers have the same successor 
4. o is not the successor of any number 
5. any property of o and of the successor of any number that 

possesses the property is a property of any number 
 
The word “number” is used as a predicate of the second kind in Q denoting 
the class of numbers and also as a variable referring to the elements of the 
class, and the word “successor” is a 2-place predicate in Q. By assumption 
the axioms describe a structure on E that is mapped by ρ  onto the 
description given by the Peano axioms. The Peano axioms therefore 
describe the structure of the set of pluralities. The first four axioms are 
directly abstracted from the operational definition that describes counting. 
The fifth axiom is purely structural. It expresses the induction law. 
 
Remark: The axioms give a definition of the elements of the class named 
“number” in terms of the 2-place predicate “successor”. It is only a partial 
definition of the elements of the class number. Not only the sequence of 
natural numbers satisfies the Peano axioms but also sequences like 0, 2, 4, 6, 
…. or 1, 1/2, 1/4, …. (Russell [1919]). It is only if we interpret the concepts 
of number in concordance with an operational definition of δ  that their 
meaning is unambiguously determined  
 
 
4.3 Observables 
The maps δ  are representing operational definitions and each of them 

                                                 
6The complete set of Peano axioms also contains the definitions of addition and 
multiplication. 
7 0 is the name for an element of E. The word “number” is a class name. 
8 Successor refers to a relation between the elements in E. It is a 2-place predicate of Q. 
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symbolises the kind of observations that are realised by its application. The 
range of an observable δ  is the set Rδ ⊂ P of predicates that are denoting 
the possible results of the observations applying the corresponding 
operational definitions. By the commutativity of the diagrams (1) and (2), 
each δ  defines unique π  and ρ  with which it shares the range Rδ . 
Together they express the association of a property to a system by 
observation. It is therefore natural to call these maps observables and use the 
same name to denote each of the observables ρ , π  and δ  that share range.  
 
Each 1-place predicate denotes a unique property and moreover, a map can 
only have one value for each argument, it thus follows that a system can 
only be assigned one predicate from the range Rδ ⊂ P of an observable. On 
the other hand, properties in E can be classified according to their possible 
assignments. Two properties belong to the same class if and only if one and 
the same system cannot possess them (at a given moment of time). A system 
cannot be red and green. Red and green therefore belong to the same set, the 
set of colours. The corresponding set of predicates Rc, denoting the colours, 
is by assumption the range of an observable, the observable “colour”, and 
thus associated with an operational definition. Other examples of 
observables are age, mass, position and velocity. 
 
The “classification” of 1-place predicates in terms of observables is not a 
partition. A set of observables leading to partitioning classification of the 
predicates is said to be complete. The complementary observables to a 
complete set must necessarily have functional relations to observables in the 
set. Some of the functional relations depend on the system considered and 
their specification is then called a model of the system. 
 
 

5 Descriptions, Classes, Ontologies and Taxonomies 
 
A description language for a given domain is the juxtaposition of an object 
language and a property language. Because of their association the 
observables δ , π , ρ  constitute a bridge between the object language and the 
property language with the observable δ  as the central pillar. The diagram 
 

ε

χρδν

ϕπ

EEDD

QPPN

≡→≡
↑↑↑↑

→≡→

     (4) 
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i.e. the composition of the diagrams (1), (2) and (3), expresses the semantic 
structure of the description language.  
 
Though their function differs the observables in a triple are denoted by the 
same ‘name’. “Colour” is an example of that. Thus, while δ , by ( ) reddδ =  
associates the colour red to a system d, π n( )= red stands for the sentence “n 
is red” and ( ) rede =ρ  is the statement that claims that red is the 
manifestation of a property e that is redness. The observation that a system 
is red expressed by the sentence “n is red”, is therefore to be interpreted as 
expressing that the system whose name is n possesses the property redness. 
This interpretation is justified by the commutativity of the diagram (4).  
 
 
5.1 Description 
A domain D is described by a set of observables, i.e. { }n21 δ....,,δ,δ . The 
description D(d) of a system d is the sentence  ( ) ( ) ( )dνp...dνpdνp n21 ∧∧∧ . 
It is the conjunction of all the atomic sentences associating a predicate that 
applies the system to its name ( )dν , i.e. such that ( ) 11 pdδ =  and ( ) 22 pdδ =  
and … and ( ) nn pdδ = . Accordingly,  
 

D(d) = ( ) ( ) ( )dνp...dνpdνp n21 ∧∧∧   
 
is a description of the system d if and only if 
 
 ( ) ( ) ( )( ) tdνp...dνpdνpτ n21 =∧∧∧  
 
D(d) is therefore also a definition of the word ( )dνn =  denoting the name 
of d. 
 
A description based on all the observables is usually redundant. Because of 
relations between the observables there are, in general, more observables 
then is needed to distinguish a system from other systems of the domain. A 
minimal set that is sufficient for the identification of systems is said to be 
complete, i.e. if the set 
 
 ( ) ( ) ( )( ){ }==∧∧∧ tdνp...dνpdνpτ|d n21  

( ) ( ) ( ){ }==== nn2211 pdδ&...&pdδ&pdδ|d  
n21 p...pp ∩∩∩  
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contains at most one system whatever are the values n21 p...,,p,p chosen 
for the observables n21 δ....,,δ,δ . Notice that the above formulae express 
equivalent definitions of the same set. 
 
5.2 Classes 
It is necessary to distinguish between two kinds of observables. This is a 
result of the problem encountered when one wants to describe change and 
that is illustrated by the following statement 
 

change do not exist, because if something changes than it is no 
longer the same and we cannot say that anything has changed 

 
This semantic problem was a central theme in Greek philosophy. One of 
their solutions, which have become a basis for physics, is to distinguish 
between two kinds of properties, properties that do not change in time and 
thus serves to identify the system and properties that change. The latter are 
called state properties. The properties of the systems are therefore also 
classified as identification and state properties. The state properties form a 
space called the state space of the systems. Classifications are usually made 
only with respect to the identification properties, in terms of the 
corresponding observables. Class names are then often used to denote the 
systems because the set of actions associated with a system (its function) 
depend on the class thus defined, even if their actualisation depend on the 
state of the system. 
 
We will illustrate this kind of description with an example, the game of 
chess. The domain is the chess board on which there are 8x8 squares each of 
which can potentially hold one of 32 pieces of the game (the systems of the 
domain) and 32 positions extending the board that can hold one piece each. 
The identification observables for the systems are colour C with values 
black and white, and form F with values pawn, rook, knight, bishop, king 
and queen. The state properties are the 96 positions of the extended board 
denoted by (-2,A), …, (10,H) and the set of possible moves on the board, 
i.e. the set of translations. The state observables are Pf and Pr that measure 
the position of a piece on the board, and Tf and Tr that measures the moves 
of the pieces, i.e. the translations along the ranks and files respectively. Pf 
has values (A, …, H), Pr has values (-2, …, 10),  Tf has values (0, ..,7) and 
Tr has values (0,..,10), i.e. they count the of steps a piece is moved. 
 
The pieces of the game are classified according to the identification 
observables and the classes named accordingly, black king, white pawn etc. 
The possible moves of the pieces are determined by their class. A white 
pawn, for example, can only move forward by one step if the path is free 
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and diagonally by one step if it encounters a black piece at that place which 
can then be beaten, i.e. moved to one of the positions on the extension of the 
board. We notice that a given piece is completely identified at any time by 
giving the actual value for each of the pair of observables Pf and Pr or Tf and 
Tr that applies to the piece. The state of a piece is thus represented by the 
couple (move, position).  
 
The classification procedure can be formalised. Thus, consider an 
independent set of identification observables, say { }n21 δ....,,δ,δ . Let jδ  be 
one of the observables and let j

i j
p ,  ij = 1, 2, 3, .., nj denote its values. Then 

 
 ( ) ( ){ }Dd&pdδ|dC j

i
jj

i jj
∈==p , ij = 1, 2, 3, .., nj 

 
is a classification of D with respect to the observable jδ . It is characterised 
by the fact that all the elements of a class ( )j

i j
C p  share the property denoted 

by j
i j

p  and that it is a partition of D; i.e. the classes are mutually 

independent and their union is the whole of D. By repeating the same 
procedure for each of the classes with another observable, one constructs the 
next level of a hierarchical classification. The procedure can be continued 
recursively until the set of observables is exhausted. If there are n 
observables, there will be n+1 levels, the top level being the domain D.  
 
The classes can be arranged in a two dimensional hierarchy, a lattice, by 
inclusion. The hierarchy depends on two choices, of a complete set of 
independent observables and on the order in which these are applied. 
Assuming that these choices are made, the hierarchy can be represented 
graphically by 
 
                                                         D 
          ________________ __| ______________________ 

         |                                     |                                            |         
___ ( )1

1pC ______ ….           ( )1
2C p        …….                   ( )1

n1
C p  __                       

|                   |                     |                                                               |                        
          ( )2

1
1
1C p,p     ( )2

2
1
1C p,p        ( )2

1
1
2C p,p        …               

       . 
       . 
       . 
 
The vertical lines express inclusion of sets. Each of the classes below a 
horizontal line is a partition of the class above.  
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Class is a ‘property’ of a collection of systems of the domain. The name of a 
class is thus an element of P. It is a predicate of the first kind in the object 
language and a name in the property language.  
 
Let ο  be a naming map for the classes in a hierarchical classification 
 
 ( )CC;PH: ο→ο a  
 
where H is the set of classes. The ontological definition of  the name 

( )( )m21 p...,,p,pCο  is 
 
 ( )( ) xC m21m21 p...xpxpp...,,p,p ∧∧∧≡ο  
 
The word “class” is a predicate in the property language and the sentence 
“ ( )Cο  is a class” is by construction a true sentence in the property language. 
The classes have only one observable, their cardinality, i.e. the number of 
elements they contains. 
 
 
5.3 Ontologies and Taxonomies 
The class names are naturally arranged according to the classification 
hierarchy. The predicates denoting the classes are serving as node titles, 
 
 
                                                         D 
          ________________ __| ______________________ 

         |                                     |                                            |         
___ ( )( )1

1pCο ____ ….           ( )( )1
2C pο        …               ( )( )1

n1
C pο  __                       

|                   |                     |                                                               |                        
 ( )( )2

1
1
1C p,pο     ( )( )2

2
1
1C p,pο     ( )( )2

1
1
2C p,pο        …               

       . 
       . 
        
The taxonomy endowed with the ontological definitions for the variable 
names is a linguistic representation of the classification. The ontological 
definitions impose a syntactic structure on the taxonomy that mirrors the 
class inclusion relations and create semantic relations between the taxonomy 
titles. There is two important notions, family and heritage, that characterise 
these relations. Titles on the same level belong to the same family and a title 
denoting a class C inherit meaning from titles denoting superclasses of C. 
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The position of a title in the taxonomy considered in its own terms, 
therefore limits the possible meaning of the titles without completely 
determining them. Titles on a higher level have a less precise meaning than 
titles on a lower level. The structure defined by the taxonomy endows the 
object language with reasoning power by means of the tautologies 
 

m'mfor tnp...npnpnp...npnpτ m'
i

2
i

1
i

m
i

21
i 2 >=⎟

⎠
⎞⎜

⎝
⎛ ∧∧∧→∧∧∧  

This mirrors the semantic relation  
 

”if ( )m
i

2
i

1
i p,..,p,pCd∈  then ( )m'

i
2
i

1
i p,..,p,pCd∈  for m>m’”  

 

i.e. if ( )dn ν=  then the sentence ” np...npnp m21
i ii ∧∧∧ ” is true and 

” np...npnp m'
i

2
i

1
i ∧∧∧ ” will also be true. 

 
A node title is the name of a corresponding class. By convention the same 
word is also used to denote any element in a class. It is then a variable name 
and referred to as a variable over the class. The convention can be improved 
by using lower case and capital first letters to distinguish between the use of 
a word as a variable name or as a predicate of the second kind. 
  
Using this convention, the sentences “dog is a Predator”, “spaniel is a Dog” 
and ”spaniel is Predator” are examples that show that titles higher in the 
taxonomy have more precise meaning then titles the titles lower in the 
taxonomy. In fact, the syllogism  
 

all dogs are Predators 
all spaniels are Dogs 
all spaniels are Predators 

 
is automatically valid. 
 
One may also use relations to determine classes or categories by 
satisfaction. If r is a 2-ary predicate in a language based on D and n is the 
name of a given system, then 
 

( )( ){ }Dd&dν,| ∈nrd  
 
denotes the class of all the systems that has the relation r to the one named 
n. 
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6 Concluding Remarks 
 
The above account of the semantic of a description language for a domain 
D is a partial formalisation. It has been described as the juxtaposition of two 
languages each of which is based on the syntax of first order predicate logic. 
The language has a well-defined alphabet; a set of formation rules and at 
least some axioms can be established on the basis of our description. The 
description has been made in a meta-language employing the resources of 
first order predicate logic, set theory and the theory of mappings. A formal 
study of the semantic of the description language is thus possible applying 
first order predicate logic. This reveals relations between syntactic and 
semantic relations that do not appear in our study. Its study is outside the 
scope of the present paper. 
 
The class of languages to which our description applies is general enough to 
include all kind of knowledge representation languages, also scientific 
theories like those of physics. The study has, however, mainly been 
motivated by problems encountered in modelling systems and processes that 
are to be implemented as computer models.  
 
Sowa [2000] lists five abstraction levels for modelling9 
 

1. Linguistic. The level of arbitrary concepts, words and expressions of 
natural languages 

2. Conceptual. The level of semantic relations, linguistic roles, objects 
and actions 

3. Epistemological. A level for defining concepts types with subtypes, 
inheritance and structuring relations 

4. Logical. Symbolic logic with its propositions, predicates, variables, 
quantifiers and Boolean operators 

5. Implementational. The level of data structures such as atoms, 
pointers, lists and other programming notions 

 
The first four levels lists the development that takes place during the 
construction of models in any science, from simple ideas about the 
constitution and behaviour of a system to more substantial ones and at the 
end a mathematical model that can be tested.  
 
Models are subjected to the condition of faithful representation of the 
systems they picture. Computer models also serve an additional purpose. 
They are tools by means of which human operators not knowing anything 

                                                 
9 The list is originally due to Ron Brachman. We have listed the levels in the opposite 
direction. 
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about computers and programming might accomplish mundane tasks. 
Computer models are thus also subjected to the normative judgement of 
how easy it is to perform these tasks. The user interface must give direct 
access to all important operations. Because the user interface reflects the 
logical model that is implemented this puts additional conditions on the 
modelling. The semantic basis for the model must correspond to that of the 
intended users. For developers to make workable models it is thus necessary 
to know how the logical, syntactic and semantic structures of language are 
related. The motivation of this paper has been to give an account of this 
based on Wittgensteins picture theory which leads to the extensive use of 
maps and Kant’s distinction between “Ding an sich” and “Ding für mich” 
from which the distinction between object language and property language 
follows. Models are formulated in both languages. The taxonomy of 
classification of the systems of a domain and the descriptions of the systems 
are models in the object language. A taxonomy, possibly supplemented by 
relations between the systems, provides a model of the domain, and the 
description of a system a model of the system. On the other hand, the Peano 
axioms provide a model, or ontology, of the natural numbers10. This is a 
model in the property language. Most computer models are models of 
abstract systems. They are thus formulated in the property language. We 
will deal with this case in a forthcoming paper. 
 
 
Appendix: Maps 
Interpretation is based on correspondence, equality and identification. By 
equality, one means same meaning. It is expressed by the sign ”=”, an 
example is ”1+2 = 3”. Identification also refers to symbolic representation. 
To express this one employs the sign ”≡”. This sign means “identical to” or 
“defined by”. Correspondence is represented by maps between the set of 
elements that are known and the set of elements that are to be interpreted. 
The correspondence is symbolised by sign ”→” and the relation between the 
elements by the sign ”a ”. 
 
A map f from a set A to a set B that associates elements in A to elements in B 
is thus expressed by 
 
 ( ) bafaBAf =→ a;:  
 
A is called the domain for f and B the target. The set f a( ) | a ∈ A{ }⊂ B  is 
the range of f. The set a | f a( )= b{ }⊂ A  is called the inverse picture of b in 

                                                 
10 The use of the word model in model theory is the opposite of our use here. In model 
theory one would say that the natural numbers is a model of the Peano axioms. 
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A. If f a( ) | a ∈ A{ }= B , then f is said to be onto. f is into if the cardinal 
number for a | f a( )= b{ } is 0 or 1 for all b. A map f that is into and onto is 
one-to-one. The map has then a unique inverse denoted f −1 : B → A . A 
necessary condition for the existence of one-to-one maps between two sets 
A and B is that they have the same cardinal number. 
 
Maps can be composed. If 
 
 ( ) bafaBAf =→ a;:  
and 
 
 ( ) cbfbCBg =→ a;:  
 
are maps from A to B and B to C, then  
 
 ( )( ) cafgaCAfg =→ ao ;:  
 
is a map from A to C. 
 
Compositions of maps can be represented by diagrams, for example 
 

g
B → C
↑ f ↑h
A ≡ A

 

 
The diagram is said to be commutative if hfg =o , i.e. g f a( )( )= h a( ) for 
all a in A. 
 
Mathematical sets are sets with a structure, i.e. that there exists relations 
between the elements. This structure is reflected in the properties of the 
maps that preserve the structure. The study of mathematical structures can 
thus also be referred to the properties of maps. 
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