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ABSTRACT 
 
Reduction of NOx- and particle emissions of Diesel en-
gines is worldwide an important challenge for the engi-
neers. Some unregulated components, like NO2, NH3 
and naoparticles NP *) came in the focus of attention in 
the last years. 
 
Application of EGR and / or SCR can lower NOx, using 
RME (Bxx) can increase NOx. What happens with NP, 
parameter which enters in some further steps of exhaust 
gas legislation in Europe? 
 
The present paper informs about the results with EGR, 
B100 and SCR obtained on a medium duty Diesel en-
gine in the versions: Euro 3 (w/o EGR) & Euro 4 (with 
EGR), both without particle filter. 
 
The investigations were performed according to the pro-
cedures of the international network project VERT *) 
dePN (de-activation, de-contamination, disposal of parti-
cles & NOx). 
 
The most important findings are: 
 

• the EGR of the new engine version E4 is active at 
middle load, 

• the NOx reduction potentials in ETC with combina-
tions of the investigated measures are: 
EGR reduces NOx approx. in the same range, as 
B100 increases it (17-20%); SCR is the strongest 
reduction measure in the range of 73%.  
These potentials are similar at middle-load stationary 
operation. 

• the influences on nanoparticles counts emissions 
(PC) depend on different factors and can partly 
change between stationary and dynamic operation 
and with the use of B100.  

 
In summary: EGR and SCR can efficiently reduce NOx 
and overcompensate the effect of B100. 
EGR is most advantageous at low load, when SCR is 
not active. 
 
 
INTRODUCTION & OBJECTIVES 
 
The investigations concerning the reduction potentials of 
critical emissions NOx & NP were performed with EGR / 
B100 / SCR and with limited variation of the injection 
timing SOI. 

 
The exhaust gas recirculation EGR is commonly used to 
reduce NOx. As a drawback the increase of other emis-
sions, like HC, or particle mass & counts can appear 
with increasing EGR. This risk is extremely reduced with 
the modern injection systems (common rail CR) with 
very high injection pressures, so the EGR-rates are very 
much increased in engines of new generations. The 
EGR cooling, which brings further advantages of NOx 
and the dynamic regulation of EGR give further chal-
lenges for developers, [1], [2]. 
 
The removal of NOx from the lean exhaust gases of Die-
sel engines (also lean-burn gasoline engines) is an im-
portant challenge. Selective catalytic reduction (SCR) 
uses a supplementary substance – reduction agent – 
which in presence of catalysts produces useful reactions 
transforming NOx in N2 and H2O. 
 
The preferred reduction agent for toxicological and 
safety reasons is the water solution of urea (AdBlue), 
which due to reaction with water (hydrolysis) and due to 
thermal decomposition (thermolysis) produces ammonia 
NH3, which is the real reduction substance. 
 
The main deNOx-reactions between NH3, NO and NO2 
are often mentioned in the literature [3, 4, 5, 6, 7]. They 
have different speeds according to the temperatures of 
gas and catalysts, space velocity and stoichiometry. All 
these influences cause a complex situation of reactions 
during the transient engine operation. 
Additionally to that there are temperature windows for 
catalysts and cut off the AdBlue-injection at low exhaust 
gas temperatures to prevent the deposits of residues. 
 
Several side reactions and secondary substances are 
present. An objective is to minimize the tail pipe emis-
sions of: ammonia NH3, nitrous oxide N2O, isocyanic 
acid HNCO and ammonium nitrate NH4 NO3 (also known 
as secondary nanoparticles). 
 
Blend fuels with RME (biodiesel Bxx) have impact on 
emissions, which depends on the engine operating col-
lective. At full load there is a tendency of increased NOx 
and reduced CO, HC & PM; at lower part load inversely, 
[8]. 
 
  
*) Abbreviations see at the end of this paper 
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For nanoparticles usually a bimodal particle size distribu-
tion (PSD) is produced due to spontaneous condensates 
in nuclei mode (the lowest size range below 30-40 nm) 
with biofuels, [9, 10]. Introducing EGR provokes an in-
crease of nanoparticles count concentrations, [11, 12]. 
 
For the successful long term operation the limiting of 
impurities and phosphorus in biofuels according to the 
present standards, as well as a carefull choice of lubri-
cating oil are strongly recommended. 
 
With SCR alone there are no differences of NOx and of 
NOx reduction rate (KNOX) with increasing RME portion; 
there is lowering of CO & HC. With SCR catalyst there is 
usually a small reduction of nanoparticles concentrations 
(in the range of 10-20%, similar like an usual oxidation 
catalyst), [13]. 
 
The objectives of the present work are to investigate the 
influences of EGR with Diesel and with B100 and the 
potentials of the present SCR-system concerning deNOx 
rates and nanoparticles. 
 
For comparison of potentials and drawbacks a limited 
variation of injection timing was performed, as an off-set 
of +/- 3 degrees CA in the engine map. 
 
The tests were performed at the Laboratories for IC-
Engines and Exhaust Emission Control of the University 
of Applied Sciences Biel, Switzerland (AFHB). 
 
 
TESTED ENGINE, FUELS, LUBRICANT 

Test engine 
 
Manufacturer: Iveco, Torino Italy 
Type: F1C Euro 3 / Euro 4 
Displacement: 3.00 Liters 
RPM: max. 4200 rpm 
Rated power: 100 kW @ 3500 rpm 
Model: 4 cylinder in-line 
Combustion process: direct injection 
Injection system Bosch Common Rail 1600 bar 
Supercharging: Turbocharger with intercooling 
Emission control: none 
Development period: until 2000 (Euro 3) 
 
Fig. 1 shows the engine and the apparatus for nanopar-
ticle analytics SMPS & NanoMet in the laboratory for IC-
engines, University of Applied Sciences, Biel-Bienne. 
 
Fuels 
 
Following base fuels were used for the research  
(Table 1): 
 
• Shell Formula Diesel fuel Swiss market summer 

quality (10 ppm S) according to SN EN 590 
• Rapeseed Oil Methyl Ester RME from Flamol, 

Berne, CH 
 
Table 1 represents the most important data of the fuels 
according to the standards and the analysis certificates.  

It can be remarked, that there are differences of density, 
heat value, stoichiometric air requirement and boiling 
range, which have influences on the engine operation 
and especially on the full load parameters. These chang-
ing fuel parameters were taken into account by the eva-
luation of measurements. 
 

 
 
Fig.1: IVECO engine F1C and equipment for nanopar-

ticle measurements in the engine room 
 

 
Tabel 1: Fuel properties as per EU-standards and 

further analysis of the test fuels 
 
 
Lubricant 
 
For all tests a special lubeoil Mobil 1 ESP Formula 5W-
30 was used. 
 
Table 2 shows the available data of this oil,  
ACEA classes: C3, A3, B3/B4,  
API classes: SL / SM; CF 
 

 
Tabel 2:  Data of the utilized oil (* analysis, others: 
 specifications) 
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Fig. 6 shows the limited engine map and the 4 points 
steps-test. 
 

• operating point OP 3c, 20% load, 2200 rpm / 65 Nm 
• operating point OP 3b, 30% load, 2200 rpm / 98 Nm 
• operating point OP 3,  50% load, 2200 rpm / 162 Nm 
• operating point OP 1, 100% load, 2200 rpm / FL 
 
These operating points were chosen in such way that 
the urea switch-on was included in the test (between 
20% and 30% load). 
The denomination of the OP’s from other measuring se-
ries was not changed in order to keep comparability with 
other projects and new OP’s were named by adding a 
letter 3b, 3c). 
 
For a more detailed investigation of the tested system 
different sampling positions (SP) were used in previous 
research, see Fig. 5. In the present works only SP 3, 
sampling position at tailpipe with and without aftertreat-
ment system was used. 
 
The dynamic testing was performed with the ETC (Euro-
pean Transient Cycle), which in this work was defined on 
the basis of the non limited engine operation map 
(NEM), for the engine version E3, Fig. 7. The definition 
of ETC was not changed, to keep a better comparability 
with the previous results. 
 

 
Fig.7: Torque & speed in ETC IVECO F1C 
 
The tests have shown that the backpressure at dynamic 
operation is generally lower, as at stationary operation 
and therefore the dynamic tests were performed with 
ETC adapted to the entire engine operation map. 
 
The tests were driven after a warm-up phase, when the 
engine coolant temperature and lube oil temperature 
reached their stationary values (stationary points tests). 
 
Before the start of each dynamic cycle the same proce-
dure of conditioning was used to fix as well as possible 
the thermal conditions of the exhaust gas aftertreatment 
system. 
This conditioning was: 5 min pt. 1 and 0.5 min idling. 
 
The test program consisted of: 
• test procedures: steps-tests at 2200 rpm and ETC 

(NEM); 
• aftertreatment systems: without, with SCR only; 
• fuels: Diesel (ULSD) & B100; 
• with/without EGR (engine versions E4 / E(4)) 
 
 

TESTED SCR SYSTEM  
 
The SCR exhaust gas aftertreatment system was in-
stalled on the IVECO research engine in the ICE-
laboratory in Biel, CH. 
This system is designed for dynamic on-road applica-
tions. 
The filters and catalysts are exchangeable moduls, for 
SCR alone the DPF modulus was removed. 
 
The investigations in the present work were performed 
without DPF, with the Vanadium-based SCR catalyst 
downstream of the urea injection point (see scheme   
Fig. 5).  
Additionally to the elements in the engine exhaust sys-
tem an Ad Blue-tank and Ad Blue injection unit with 
pump, sensors and electronic control were installed in 
the laboratory. 
 
There are following sensors, which enable the open-loop 
control of urea dosing: 

• 2x Temperature sensors (PT200) 
• 1x AdBlue level sensor 
• 1x Mass Air Flow sensor 
• 2x NOx sensors (upstream & downstream DPF) 
Optional: 1x NOx sensor downstream SCR catalysts for 
monitoring of performance. 
 
Urea dosing and control unit has an open loop control. 
 
Optional: GPRS Flight recorder enables: 

• data logging of system performance, state and 
alarms on a remote server/database 

• changing and checking of configuration parameters 
of urea dosing unit via internet. 

 
The SCR-system, which was investigated in the present 
work is without mixer (only mixing tube 1.0 m). 
 
RESULTS 
 
Steady state operation, 4 pts-test 
 
In this research 4 operating points (OP) were used.  
 
At the lowest load (20%, OP3c) SCR is not active due to 
lower exhaust gas temperatures and urea cut off. 
 
All part load operating points (OP3c, OP3b, OP3) were 
realized at exactly the same speed & torque. In contrary 
the full load points (OP1) were driven at different torques 
according to the used fuel (same engine speed). 
 
With the used EGR map at full load (OP1) EGR is al-
most switched off with Diesel and completely closed with 
B100. Therefore, in the variant “with EGR” the full load 
point (OP1) is de facto without EGR. 
 
Except of influences of EGR the following figures show 
also the influences of B100 (RME) and of SCR. 
 
Effect of EGR at middle engine load (OP3, 50%) on 
some control- and emissions parameters is demonstrat-
ed in Fig. 8. Looking on these plots from right to left it 
can be summarized that EGR lowers the NOx-emissions 
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and increases the NP-emissions (PAS & DC) (compari-
son E(4)-E4). With EGR there is less gas flow through 
the engine, lower boost pressure and lower backpres-
sure. At higher engine loads there are also higher engine 
out exhaust gas temperatures with EGR. 

 
Fig.8: Switch off EGR mode at 2200 rpm / 162 Nm, 

Iveco F1C E4; diesel; w/o exhaust gas after-
treatment system 

 
PAS (photoelectric aerosol sensor) is sensitive to the 
surface of particulates and to the chemical properties of 
the surface. It indicates the solid carbonaceous particles. 
DC (diffusion charging sensor) measures the total active 
particle surface independent of the chemical properties. 
It indicates the solids and the condensates. 
 
All signals of PAS and DC in this figure are converted to 
the values responding to the undiluted volume concen-
trations in the exhaust gas. 
 
The NanoMet results usually confirm the findings from 
SMPS and are regarded, especially DC, as parameters 
substituting the NP-count concentration measurement. 
 
Fig. 9 gives an example of some NOx-related emission 
values depending on B100 and SCR, all with EGR. 
It can be remarked, that: 
B100: increases NOx at higher part load and full load in 
 the range of 10-15%, reduces strongly HC and 
 increases CO (not represented here). 
SCR: reduces strongly NOx & NO2, is source of NH3 in 
 the range up to 20 ppm at full load, reduces HC. 
 
The resulting average EGR rates for both fuels are 
represented in this figure. They are different for Diesel 
and for B100 because of different injection duration and 

air consumption and different settings of the present 
EGR control system.  

 
Fig.9: Influences of B100 & SCR on NOx emissions in 

4pts.-test, Iveco F1C E4; 2200rpm 
 
Identical tests were also performed without EGR. 
 
Table 3 summarizes the relative changes of NOx-
emissions, as averages of 4 points. It results, that EGR 
reduces NOx approximately in the same range (15%) as 
B100 increases it (12%). SCR is the strongest reduction 
tool in the range of 60% (by averaging only OP’s with 
SCR active 80%). 
 

 
Tabel 3: Relative changes of NOx-emissions (FTIR), 

average of 4 pts. 
Fig. 10 gives example of SMPS PSD-specta with differ-
ent engine variants at middle load (OP3, 50% load). The 
PSD are represented in linear and in logarithmic scale to 
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EGR increases PC by 29%. Looking separately on the 
two fuels this increase is much stronger with Diesel fuel, 
than with B100. 
B100 reduces PC for this engine and test procedure by 
72% and SCR reduces PC by 15%, 
 
Dynamic operation, ETC 
 
Fig. 13 – shows examples of NOx-traces in a part of 
ETC, comparing the effects of: 
EGR, SCR, EGR+SCR, B100 and B100+EGR+SCR – 
the NOx-differences caused by the different measures 
are well demonstrated. 

 
Fig.13: Influences of EGR, B100 & SCR on NOx-traces 

in ETC*), Iveco F1C E4 
 
Fig. 14 represents the average emissions in ETC of: 
NOx, NO2, NH3 and CPC (all with EGR). 
Again it is confirmed, that: 
- B100: increases NOx, but reduces NO2 and NP 

(CPC) 
- SCR: reduces strongly NOx & NO2, increases NH3, 

reduces slithly CPC with Diesel (no reduction with 
B100). 

Identical tests have also been performed without EGR.  
 
Table 5 summarizes the average reduction or increase 
rates of NOx in ETC with the investigated measures. 
 
Similar statements like for the stationary operation can 
be made for the results in ETC: 
EGR reduces NOx approx. in the same range (17%), as 
B100 increases it (10%); SCR is the strongest reduction 
measure in the range of 72%. 
 
Table 6 gives an analogous information for CPC – in-
crease, or CPC-reduction rates in ETC. 
 

With EGR the total NP-counts are much less increased 
with B100, than with standard Diesel fuel. This is very 
plausible, since B100 produces lower total particle num-
bers with more spontaneous condensates in nuclei 
mode, which are much more lost, or agglomerated on 
the way from engine exhaust to the engine intake. 

 
Fig.14: Average emissions in ETC, Iveco F1C E4; with 

diesel & B100; with and w/o SCR 

 
Tabel 5: Reduction rates of NOx in ETC 
 
With B100 the NP-emissions are reduced w/o SCR, but 
increased with SCR. The reason for that is the interac-
tion of secondary nanoparticles from SCR with the aero-
sol coming from the engine. 
With B100 the exhaust gas contains much more heavy 
HC’s, which are ready for spontaneous condensation 
and the secondary NP’s from SCR give a “seeding ef-
fect” for that, [13]. 
 
Regarding the CPC RR with SCR (Tab. 6) the difference 
between Diesel and B100 is also extremely pronounced. 
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Tabel 6: Relative changes of summary particle counts   

(PC) in ETC 
 
In summary regarding the Diesel fuel only it can be 
stated, that EGR increases NP /CPC by 44% and SCR 
reduces it by 15%. 
 
Variation of start of injection SOI +/- 3°CA was per-
formed to show the magnitude of positive and negative 
effects. This was done by introducing an offset in the 
engine operation map. 
 
SOI is the start of main injection quantity. If there is a 
preinjection, it is always kept at the same distance from 
the main injectors. 
 
The name SOI was introduced to simplify the under-
standing. In fact this is the start of energizing the injec-
tors. 

 
Fig.15: Variation of start of injection (SOI): Comparison 

of NOx-plots in ETC*), Iveco F1C E(4); diesel; 
w/o exhaust gas aftertreatment system 

 
Fig. 15 shows the NOx- and NO2 plots in an interval of 
ETC with different SOI. As usual the earlier injection tim-
ing results in higher NOx. 

The way to reduce NOx is the late injection, which in turn 
causes higher fuel consumption. 
 
Other test with B100 at stationary and dynamic engine 
operation were performed with variation of SOI. They are 
not further described here, but the findings are included 
in conclusions. 
 
 
Combinations of measures 
 
In Figures 16 & 17 the effects of the investigated mea-
sures (B100, SOI, EGR, SCR) on NOx, NP and ηe are 
summarized. The effective engine efficiency ηe is in-
versely proportional to the fuel consumption. 
 
At low load (OP3c), Fig. 16, there is no influence of B100 
on NOx. 
Reducing NOx by retarding SOI is disadvantageous for 
the effective efficiency (higher fuel consumption). 
EGR reduces NOx in the same magnitude, like retarded 
SOI, but without the draw-back of efficiency. SCR has a 
little effect on NOx because of urea cut-off. All variants 
with B100 have lower NP-emissions than Diesel and 
there are only little differences between them concerning 
NP’s. 

 
Fig.16: Influences of combinations of measures on 

emissions NOx & NP and on the effective engine 
efficiency, Iveco F1C E4; EGR, B100; SOI*), 
SCR 

 
At transient operation (ETC), Fig. 17, the influences on 
NOx are similar as at stationary points: slight increase of 
NOx by B100, reduction by EGR and significant reduc-
tion by SCR. The NP-emission level (CPC) with B100 is 
higher than with Diesel. 
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Fig.17: Influences of combinations of measures on 

emissions NOx & NP and on the effective engine 
efficiency, Iveco F1C E4; EGR, B100; SOI**), 
SCR 

 
CONCLUSIONS 
 
From the present tests performed at stationary engine 
operation in steps-tests and at dynamic engine operation 
in ETC several results can be remarked. The most im-
portant are: 
 
General influences of EGR 
 
EGR, which is active at middle load of version E4 has 
following effects: 
 
• EGR lowers NOx and increases CO, PAS & DC 

(NP), 
• EGR reduces the gas throughput through the en-

gine, 
• EGR lowers the boost pressure and the backpres-

sure,  
• EGR increases the exhaust gas temperature. 
 
These effects are confirmed in dynamic operation (ETC). 
 
Stationary engine operation, 4 pts tests, EGR, B100, 
SCR 
 
EGR: lowers NOx, but does not impact NO2 (NO2/NOx- 
  ratio increases), lowers slightly NH3 (which is  
  present only with SCR),  increases the NP counts 
  in average of 4 pts 43% with Diesel & 16% with  
  B100, 
B100: increases NOx at higher part load and full load in 

the range of 10-15%,  
  reduces the NP counts in average of 4 pts by 

72%. 

SCR: reduces strongly NOx & NO2, is source of NH3 in the 
  range up to 20 ppm at full load, reduces HC, 
  reduces the NP counts in average of 4 pts by  
  15%. 
 
The average NOx reduction potentials with EGR, B100 & 
SCR are: EGR reduces NOx approximately in the same 
range (15%) as B100 increases it (12%). SCR is the 
strongest reduction tool in the range of 60% (by ave-
raging only OP’s with SCR active 80%). 
 
Transient engine operation, ETC, EGR, B100, SCR 
 
EGR : reduces NOx (with Diesel) by 23%, no clear influ- 
  ence on NO2 increases the NP counts in average 
  by 44% (with Diesel), 
B100: increases NOx by 10%; no clear influence on NO2 
  reduces PC with Diesel by 6%,  
SCR: reduces NOx (in average of all variants) by 73%  
  and eliminates nearly NO2 (by 95-100%); with  
  SCR there are: an average NH3-emission up to  
  12 ppm (LDS), reduces PC with Diesel (~ 15%);  
  with B100 there is  lower reduction, (∼ 3%). 
 
The NOx reduction potentials with combination of EGR, 
B100 & SCR are: 
 
EGR reduces NOx approx. in the same range (17%), as 
B100 increases it (10%); SCR is the strongest reduction 
measure in the range of 72%. 
 
Variation of SOI & combinations 
 
After the tests with Diesel and B100 with variation of SOI 
following statements can be made: 
 

• for fuels with different heat values, like Diesel 
and B100, there are different injection durations 
for the same power and the ECU sets differently 
the injection timing map, 

• NOx-emissions generally increase with advan-
cing the SOI. At full load NOx-values are clearly 
higher for B100, 

• the influence of SOI on the integrated NP-
emissions depends on engine load:  
o at lower OP3c there is a tendency of increas-

ing NP with advancing SOI, 
o at higher OP1 the NP with Diesel decrease 

with advancing SOI, with B100 there is no in-
fluence of SOI, 

o at dynamic operation (ETC) the nanoparticles 
emissions are not influenced by the SOI, 

• with combination of different measures the in-
crease of NOx caused by B100 can be compen-
sated by EGR & SCR, 

• EGR is particularly useful at lower load, when 
SCR is still inactive, 

• reducing NOx by means of retarding SOI has a 
disadvantage of higher energy consumption. 
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Finally it can be stated, that the combination of EGR and 
SCR is a very important way to reduce NOx without draw-
backs for: the fuel-consumption, for other emission com-
ponents and nanoparticles. 
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ABBREVIATIONS 
 
AFHB Abgasprüfstelle FH Biel, CH 
Air min  stoichiometric air requirement 
BAFU Bundesamt für Umwelt, CH (Swiss EPA) 
Bxx blend fuel with biocomponent share xx% 
CFPP cold filter plugging point 
CLD chemoluminescence detector 
CNC condensation nuclei counter 
CPC condensation particle counter 
DC Diffusion Charging Sensor 
dePN de Particles + deNOx 
DI Direct Injection 
DMA differential mobility analyzer 
DPF Diesel Particle Filter 
E3 engine version Euro3 w/o EGR 
E4 engine version Euro4 with EGR 
E(4) engine version Euro4 closed EGR 
ECU electronic control unit 
EGR exhaust gas recirculation 
EPA Environmental Protection Agency 
ETC European Transient Cycle 
FAME Fatty Acid Methyl Ester 
FE filtration efficiency 
FID flame ionization detector 
FL full load 
FOEN Federal Office of Environment  (BAFU) 
FTIR Fourrier Transform Infrared Spectrometer 
HD heavy duty 
Hu lower calorific value 
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ICE internal combustion engines 
IR increase rate 
Kx  conversion rate of “x” 
LDS Laser Diode Spectrometer (for NH3) 
LEM limited engine map 
LRV Luftreinhalteverordnung  
MD19 heated minidiluter 
NanoMet NanoMet nanoparticle summary surface  
  analyser (PAS + DC + MD19) 
NEM nonlimited engine map  
NP nanoparticles < 999 nm (SMPS range) 
OAPC Ordinance on Air Pollution Control 
OP operating point 
PAS Photoelectric Aerosol Sensor 
PC particle counts 
PM particulate matter, particle mass 
PSD particle size distribution 
RE reduction efficiency 
RME rapeseed oil methyl ester 

RR reduction rate 
SCR selective catalytic reduction 
SMPS Scanning Mobility Particle Sizer 
SOI start of injection 
SP sampling position 
TC thermoconditioner.   
ULSD ultra low sulfur Diesel 
VERT Verminderung der Emissionen von Real
 maschinen in Tunelbau 
 Verification of Emission Reduction Tech
 nologies 
VERTdePN VERT DPF + VERT deNOx 
α feed factor of urea dosing; 
 ratio: urea injected / urea stoichio- 
 metric; calculated by the ECU. 
 here α = 0.9 
 

 
 
 
 
 
 
 
 
 
  
 
 


