

SUSRENEW - WP 3 Approach to modelling climate risks related to a full renewable energy system

Iva Ridjan Skov, Associate Professor

Alessandro Mati, Research Assistant

Miguel Chang, Research Scientist, IFE

Preparations for setting up the model Model creation

Integration of weather data How can we translate weather data to modelling – Climate Matrix

2

3

Model coupling

How to enhance the model allignement and coupling (TIMES and ENERGYPLAN)

Preliminary results Test run with few inputs

Integration of weather data

Integration of weather data **Climate Data**

ERA5 dataset – Copernicus Climate Change Service (CS3)

- Hourly data with high temporal resolution, covering the period from **1950 to the present**, enabling long-term 1. analyses and historical trends for energy systems modelling.
- Global coverage spatial resolution of 31 km (0.25 $^{\circ}$ x 0.25 $^{\circ}$) 2.
 - Wind speed (10m, 100m) Wind energy assessmen. •
 - **Solar radiation (GHI, DNI, DHI)** –Solar energy output. ٠
 - **Temperature (2m)** Demand forecasting and HVAC systems.
 - **Precipitation** Impacts hydropower prod.
 - Humidity (various layers) Affects PP efficiency and evaporation. ۲
 - **Cloud cover** Influences solar power systems. ٠
 - Soil moisture Geothermal and hydrology.
 - Sea surface temperature (SST) Influence on marine energy.
 - Wave height and energy For wave energy systems.


Integration of weather data Climate Scenario Matrix

EXTREME WEATHER EVENTS

- Extreme temperatures
- Prolonged droughts
- Wildfires
- Ice storms/blizards
- Windstorms
- Flooding
- Heatwaves
- Storm surges
- Cold waves
- Hailstorms
- ...

ALBORG

UNIVERSITY

Scenarios generation

•

...

COMPOUND EVENTS

- Cold winter + drought + doldrum
- Clustering of major storm events
- Extreme precipitation events
 - Dunkelflaute (low wind + persistent cloud cover)
- Storm surge + heavy rainfall
- Compound drought + heatwave
- Lack of rainfall + atmospheric blocking
- Long term vegetation stress + hurricane influence


Final test matrix

Filtering and validation

PAGE

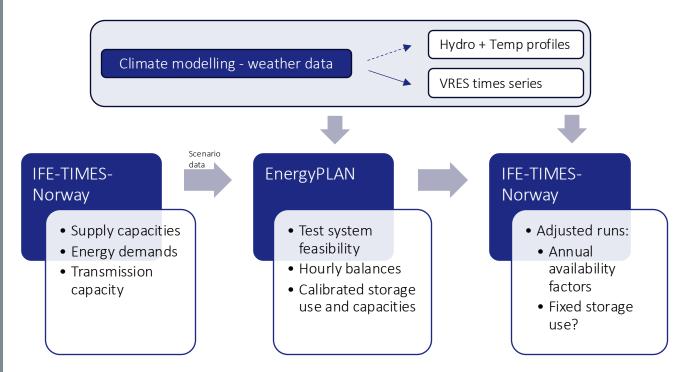
Integration of weather data Climate Scenario Matrix


Anomaly intensity

low

high

Climate impact driver	Scenarios						
	1	2	3	4	5	6	•••
Heat and Cold							
Wet and dry							
Wind							
Snow and Ice							
Coastal							
Open ocean							
Other							
Probability							•••
Significance							


1

Modelling framework

Model coupling Modelling framework

- Transition pathways from IFE-TIMES-Norway as inputs to EnergyPLAN (simulation)
- Stress test system feasibility during hourly operations
- Develop links and feedback loop from hourly simulations of the system back into TIMES
- Selection of significant atypical meteorological years (1972,2010) with a combination of different climate data-series
- Mapping and inclusion of a wide spectrum of climate hazards.

