

VESTLANDSFORSKING

Creating sustainable renewable energy futures with low climate risks (SusRenew)

Kick-off seminar, Sogndal 4-5 May 2023

Agenda

Thursday 4 May, at Sogndal hotel

14:30	Opening, by Carlo (WNRI)									
	 Short presentation round (name, institution, main research interest) 									
	 Introduction to the project 									
	 Formal procedures regarding contracts, introduction of new user partner 									
14:50	WP1 Knowledge status of climate risk in energy systems, by Carlo (WNRI)									
	WP-outline									
15:00	WP2 Identify climate-related hazards relevant for the energy system, by Stepha									
	(NORCE)									
	WP-outline									
	 What is 'cross boundary compound climate events' and how to apply 									
	knowledge about this in the project									
15:30	WP 3 Model climate risk of the energy system, by Søren and Iva (AAU)									
	WP-outline, by Søren									
	 Proposed alternatives on how to handle the emerging new debate on 									
	nuclear energy in the project, by Søren									
	 The Energy Plan model and how it will be applied in the project, by Iva 									
16:00	WP 4 Integrate new knowledge about climate risk in existing energy models, by									
	Miguel (IFE) and Stefan (SINTEF)									
	WP-outline, by Miguel									
	 Brief introduction to the TIMES Norway model and how it will be applied in 									
	the project, by Miguel									
	 Brief introduction to relevant power market models and how the selected 									
	one will be applied in the project, by Stefan									
16:30	WP 5 Climate change adaptation strategies, by Carlo and Tara (WNRI)									
	WP-outline, by Carlo									
	 Presentation of preliminary results from a just (as 'today'!) completed 									
	survey to representatives of the renewable energy sector in Norway on the									
	perception of climate risks, by Tara									
17:00	Program ends									
18:00	Dinner at Sogndal hotel									

Friday 5 may, at the locations of Western Norway Research institute

09:00	Various cross-WP project management elements, by Geir, Tara and Carlo								
	 Internal reporting procedures, by Geir 								
	 Involvement of user-representatives, by Tara 								
	 Scientific publication plan, by Carlo 								
	 Outreach and dissemination, by Carlo 								
10:30	Annual plan for 2023, by Carlo								
11:30	Lunch								

Introduction to the project

The energy challenge

https://ourworldindata.org/

The ICPP AR5 climate risk concept

affected"

The mitigation-adaptation-sustainability matrix

Analytical model

The energy policy-discourse

- The European Environment Agency (2019): "Adaptation challenges and opportunities for the European energy system"
 - "The European energy system <u>increasingly needs to adapt</u> and become more climate resilient"
 - "Climate change and extreme weather events increasingly impact all components of the energy system. They affect the <u>availability</u> of primary energy sources (in particular renewable energy sources), the <u>transformation</u>, <u>transmission</u>, <u>distribution</u> and <u>storage</u> of energy, and energy <u>demand</u>. It is crucial that these impacts are considered in the clean energy transition"
- The Norwegian Energy Directorate (2019) "Langsiktig kraftmarkedsanalyse 2019-2040"
 - Impacts of climate change mostly addressed as an 'opportunity' (increased capacity for hydro-energy production)
 - Possible negative impacts are only mentioned <u>once</u> (my translation): "Climate change can also lead to larger and more frequent floods that can present challenges for hydropower plants. <u>This is not taken into account in</u> <u>the production projections</u>"

The energy research-discourse

- General impression of the energy research literature
 - <u>Mostly</u> about how climate change might <u>increase</u> the resource basis for renewable energy
 - <u>Less</u> about how a transition to a renewable energy society might increase the climate change exposure and vulnerability of the energy system

One example of the latter of the two perspectives

- Schaeffer, R. et al (2012): Energy sector vulnerability to climate change: A review. Volume 38, Issue 1, pp 1-12.
- «One of the greatest challenges is how to assess impacts which may occur as a consequence of the projected increase in the intensity of extreme weather events"
- "the majority of current methodologies rely on <u>past experience</u> but this may not be a sufficiently good guide for planning and operational activities in the coming decades..[therefore] <u>climate impact assessments on energy planning and operation</u> <u>need to take into account a greater number of scenarios, as well as investigate</u> <u>impacts on particular energy segments</u>"

Climate change impacts on energy systems

Energy sector	Climate variables	Related impacts	Energy sector studies
Thermoelectric power	Air/water temperature	Cooling water quantity and quality	[2,50,65]
generation (natural gas,	Air/water temperature, wind and	Cooling efficiency and turbine operational efficiency	
coal and nuclear)	humidity		
	Extreme weather events	Erosion in surface mining	
		Disruptions of offshore extraction	
Oil and Gas	Extreme weather events	Disruptions of offshore extraction	[35,36]
	Extreme weather events, air/water	Disruptions of on-shore extraction	
	temperature, flooding		
	Extreme weather events, flooding,	Disruptions of production transfer and transport	
	air temperature		
	Extreme weather events	Disruption of import operations	
	Flooding, extreme weather events	Downing of refineries	
	and air/water	Cooling water quantity and quality in oil refineries	
	temperature		
Biomass	Air temperature, precipitation,	Availability and distribution of land with suitable	[7,24-26,94]
	humidity	edaphoclimatic conditions (agricultural zoning)	
	Extreme weather events	Desertification	
	Carbon dioxide levels	Bioenergy crop yield	
Hydropower	Air temperature, precipitation,	Total and seasonal water availability (inflow to	[7,17,19,25,38,39,95-99]
-	extreme weather events	plant's reservoirs)	
		Dry spells	
		Changes in hydropower system operation	
		Evaporation from reservoirs	
Demand	Air temperature, precipitation	Increase in demand for air conditioning during	See Table 1
		the summer	
		Decrease in demand for warming during the winter	
		Increase in energy demand for irrigation	
Wind Power	Wind and extreme weather events	Changes in wind resource (intensity and duration),	[1,7,23,31,42-47]
		changes in wind shear, damage from extreme weather	
Solar Energy	Air temperature, humidity and	Insolation changes (cloud formation)	[7]
	precipitation	Decrease in efficiency due to decrease in radiation	
		Decrease in efficiency due to ambient conditions	
Geothermal	Air/water temperature	Cooling efficiency	_
Wave Energy	Wind and extreme weather events	Changes in wave resource	[31]

Contents lists available at SciVerse ScienceDirect

Schaeffer, R. et al (2012): Energy sector vulnerability to climate change: A review. Volume 38, Issue 1, pp 1-12.

The SusRenew project

Aim

- 1. develop a framework for analysing climate risk that may arise from the transition to a renewable energy system
- 2. propose strategies and principles for how to reduce the identified climate risk

Research questions

Overarching: How can the Norwegian renewable energy sector obtain low-emission goals set by Norwegian governments in 2050 and beyond while simultaneously build resilience to climate risks?

- 1. To what extent do current energy models used in energy policy decision-making cover climate risks of a future renewable energy system?
- 2. What are the most important climate hazards that may contribute to climate risks of a future renewable energy system?
- 3. What are the climate risks of a future renewable energy system?
- 4. How can new knowledge about climate risks of a future renewable energy system be implemented in current energy models used in energy policy decision-making?
- 5. How can climate risks be reduced in the ongoing transition towards a renewable energy system?

Risk-matrix and Impact Chain

NORSK SENTER FOR BEREKRAFTIG KLIMATILPASSING

WP-structure and user-group

Energy *users*:

•

- Huseiernes landsforening
- Norsk elbilforening
 Energy *providers*
- Deep Wind Offshore Tibber
- Norsk Varmepumpeforening
- Småkraftforeningen
- Samfunnsbedriftene Energy *policy actors*
- Vestland fylkeskommune, Statsforvalter Vestland

Project management

• Day-to-day (WNRI)

- Carlo Aall (project leader)
- Tara Botnen Holm (project manager)
- Geir Olav Haugen (controller)

Project management group (virtual meetings x 4/year) – check!

- Aall (leader)
- Holm (secretary)
- Løkke from AAU
- Sørland from NORCE
- Espegren from IFE
- Haavard Stensvand from Statsforvalter Vestland to represent the user group
- Scientific advisory board (physical meetings x 1/year)
 - Dr Hans Jakob Walnum
 - Professor Sirkku Juhola, Professor of urban environmental policy at the University of Helsinki
 - Dr Stefan Jaehnert, project manager at SINTEF
 - Research professor Brigt Dale, research director at Nordland research institute

Progress plan (to be adjusted)

		2	2023			2024			2025				2026				2027
WPs and tasks	q1	q2	q3	q4	q1	q2	q3	q4	q1	q2	q3	q4	q1	q2	q3	q4	q1
WP1 Knowledge status ofclimate risk in energy systems																	
T. 1.1: Systematic literature review																	
T. 1.2: Workshop #1																	
T. 1.3: Reporting																	
WP2 Identify climate-related hazards relevant for the energy system																	
T. 2.1 Workshop #2																	
T. 2.2 Establishing the knowledge basis																	
T. 2.3 Develop tools to assess compound-events																	
T. 2.4 Reporting																	
WP 3 Model climate risk of the energy system																	
T. 3.1 Workshop#3-#5 user cost																	
T. 3.2 Survey on climate risks and adaptation acceptability																	
T. 3.2 Modelling																	
T. 3.3 Reporting																	
WP 4 Include climate risk in energy models																	
T. 4.1 Select energy models																	
T. 4.2 Test selected energy models																	
T. 4.3 Workshop#6																	
T.4.4 Reporting																	
WP 5 Climate change adaptation strategies																	
T. 5.1 Sum up climate risks																	
T. 5.2 Develop adaptation proposals																	
T. 5.3 Workshop #7																	
T. 5.4 Analyse adaptation acceptability																	
T. 5.5 Reporting																	
Mid-term evaluation																	

Annual plan (to be discussed tomorrow)

Contracts

WP1 Knowledge status of climate risk in energy systems

• Responsibilities

- Lead: WNRI
- Involved: AAU, IFE, users.
- Content
 - By means of a systematic review of both research and policy literature, (a) map existing knowledge on climate risk in all parts
 of renewable energy-based systems, and (b) map to what extent (and eventually how) climate risk is assessed in existing
 energy models that form the basis for energy decisions in public government and private enterprises.

• Tasks (2q 2023 → 1q 2024)

- Systematic literature review (WNRI, AAU, IFE)
- Workshop with all user representatives, presenting and discussing the preliminary findings from task 1.1. (WNRI, AAU, IFE)
- Reporting (WNRI, AAU, IFE)

• Outputs

- A popular report in Norwegian (WNRI)
- A research articles: (1) Literature review about climate risk in the various parts of the renewable energy-based an analysing to what extent (and eventually how) climate risk is assessed in existing energy models (WNRI, AAU, IFE)

