

Case studies 8 & 9

Task and proposed implementation plan

Fulco Ludwig, Emmanuel Nyadzi, Hasse Goosen 20/10/2021

The project UNCHAIN is part of AXIS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR/BMBF (D), AEI (ES) and ANR (FR) with co-funding by the European Union (Grant No. 776608).

Horizon 2020 European Union Funding for Research & Innovation

Background

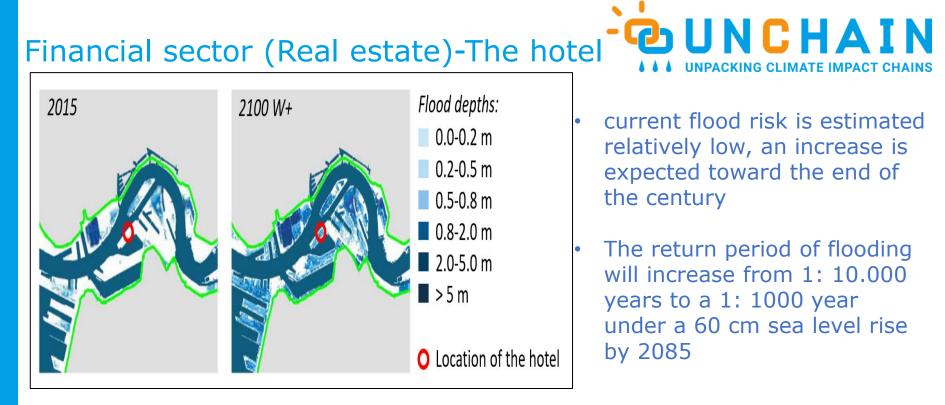
 Two case studies all in the Netherlands

financial sector (Real estate) - case 8

Railway - case 9

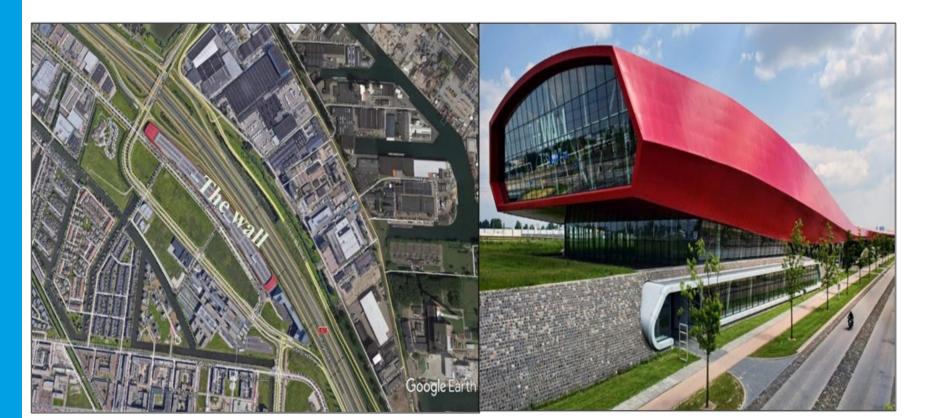
and funded by European Union




Case 8: Financial sector (Real estate)

Financial sector (Real estate)-The hotel UNPACKING CLIMATE IMPACT CHAINS

- MGVM real estate and its client BNP Paribas REIM (Munchen) are interested in understanding the physical climate risk on the property.
- Hotel is in the part of the city (with about 40,000 people) outside of the area protected by the dikes.
- Therefore, potentially vulnerable to high water levels caused by flooding of sea and high river waters.



- The area is mostly elevated with quays ranging from 3m 5.5m.
- Also protected by a large storm surge barrier which has a small chance of mechanism failure estimated around once every 50 – 100 closings.
- Under climate change sea levels will rise and river discharge may increase. This will result in a more frequent closing of the *Maeslandtkering* (storm surge barrier). Therefore, the risk of failure also increases as there is a chance of malfunctioning.

Financial sector (Real estate) - The wall

- The Wall is a 65 000m2 shopping center in Utrecht.
- It sits by the A2 highway (north-south connection). And connecting Amsterdam to other European markets, including Germany.
- The Wall is situated in low lying areas, between 20 to 60 km from the rivers Nederrijn-Lek, Eemmeer and Eem.
- Therefore, vulnerable to flood(increased magnitude and frequency of rainfall events), drought (subsidence). Also, venerable to heat stress.

Financial sector (Real estate) – The wall

Potential flooding simulation following a 2 hour downpour of 70 mm/hr :

- The main access roads to The Wall and part of the A2 highway can be flooded and be inaccessible.
- Inundation depth is estimated between 20 30 cm: potentially damaging the buildings foundation, grid infrastructure or sewer systems, depending on threshold heights of the construction.
- Under current climate, a downpour like this may happen once every 100 years.
- With climate change, this will double towards the end of the century

Financial sector (Real estate) - The wall

- The expected total soil subsidence (in cm) when no adaptation measures are being taken for the period until 2050.
- Additional 25% of the subsidence (5-10 cm) subsidence may occur as a result of climate change under all KNMI14 climate change scenarios.

⁽Grant No. 776608).

Financial sector (Real estate) - The wall

- Using the fourteen KNMI climate change scenarios:
- number of days above 30 degrees is likely to increase from around 4 days on average per year to up to 13 days by 2050 and 21 days by the end of the century.
- Cooling degree days (as an indicator for energy use required for cooling in the summer period) will go up by a factor of 5 by 2050 and a factor of 10 by the end of the century.
- Energy use for air conditioners in The Wall likely to increase over time higher operating costs and potentially higher greenhouse gas emissions.

Financial sector (Real estate)-Vulnerability

- Developed property score based on building
- Flooding
- Threshold height entrance
- parking basement,
- installations below street level, e.g. gas, heat electric meters
- Small inflow points e.g. ventilation, cellar window, butt joints.
- Underground space : basement
- Flooding in the past and damage in eur

Next stage underway

Heat stress

- ✓Active cooling
- ✓Green roof
- ✓ Summer /night ventilation
- ✓Sun/heat resistant foil
- ✓Blinds/shutters
- ✓ Glass surface
- ✓Glass sunfactor(g-value)
- ✓Insulation value(Rc value)
- ✓Colour of roof

Case 9: Railway

Railway sector ProRail - Netherlands

What climate risk **Methods** information is needed to support the adaptation Workshop Document analysis Interview needs of the rail sector?. Climate change impact Towards common pan-Adaptation Current and desired future EU rail climate services needs/data Technical infrastructure organizational (Design and operation) values Framework for analysis

Railway sector - Identified climate change impacts

Climate change	Hazard	Impact				
Low precipitation		Disruptions				
	Increased fire risk	Wooden railway sleepers catch fire				
		Burning of cables (for signaling energy supply)				
		Rotting of willows in railways for stability				
	Low groundwater levels	Rotting of wooden foundation infrastructure works				
		Insufficient water in wells for extinguishing fire				
	Low humidity	Good impact: signaling less failures of electrical equipment				
	Uneven subsidence	• The sag of station tracks, tunnels, support strictures(also: differences in				
		foundation)				
	High precipitation after	Overhead line support structures sag				
	drought					
	Flooding	Railway saturated and become unstable				
		Flooded tunnels				
High		inaccessible platforms and stations				
precipitation		Rail erosion				
		Short circuits				
		Failing switches				
		Damage to electronic equipment (e.g. location cases				
		Slip and fall accidents				
Low temperature	Frost / freeze thaw	Project planning threatened				
		Corrosion of materials due to salt sprinkling				
		Failing switches (freezing elements)				

Railway sector - Identified climate UNPACKING CLIMATE IMPACT CHAINS change impacts

Climate change	Hazard	Impact
High temperature	Heat stress	 Overhead lines sag (expansion of cables) Failing electrical equipment at stations (elevators) Decreased lifetime conversation system steal bridges Expansion of concrete works Track expansion Track buckling Problems with moving elements: bridges, switches False alarms occupied tracks Heat stress travellers and workers Thermal degradation of elements (e.g. copper)
	Change of climatic zones	Health issues because of the processionary caterpillar
Sea level	Storm surge	Big impacts on the entire infrastructure
Thunderstorms	High winds	 Discomfort travellers (lack of shelter) Moving overhead lines Fallen signposts Decrease availability of movable bridges Trees on track / overhead lines
	Lightning and electrical storms	Damage and disrupt electrical systems

Railway sector-information needs - UNCHAIN

Operational standards									
Impact/ Variable	Classes/values	Relevant for	Spatial resolution & coverage	Temporal resolution &	Format				
Heat stress for rail workers and passengers Variable: Temperature+ humidity+ clothing + age	Risk ranges, e.g. low, medium, high	-Working conditions -Passenger comfort and health	Regional classes	-Time steps of 10 years, or user can define -Historical conditions -Projections up to 50 years	-Graph or number indicating the risk for heat stress. -Dashboard allowing users to select: clothing type, age etc.				
Temperature related impacts Variable: Air Temperature	Number of days/year Air temperature is above certain degrees celsius	Multipurpose Purposes e.g. Checking for risk track buckling etc.	Regional classes	Historical & Future climate User can define timesteps (e.g. based on lifetime asset)	Dashboard allowing users to enter a temperature threshold and explore frequency or enter lifetime asset				
Precipitation related impacts Variable: Precipitation	 return periods of extreme rainfall events number of days / time period exceeding an amount of rainfall in mm. 	Flooding related Standards	Regional classes	 -Historical & Future climate -thresholds for days, months, seasons and years. -flexible timesteps (e.g. lifetime asset) 	User can explore: - Predetermined set of return -periods extreme rainfall events - thresholds for days, months, seasons and years				
Drought related impacts Variable: precipitation	precipitation. Number of consecutive days without precipitation	Drought related standards	classes	-Historical and Future climate -Flexible timesteps (e.g. based on lifetime asset)					
Wildfires	possible) and frequency of	Fire related standards	Regional classes	-Historical and Future climate -Temperature threshold wildfire events	Dashboards with different temperature threshold for wildfire events				

Railway sector-information Needs

			A A A							
Design standards										
Impact / Variable	Classes/values	Relevant for standard	Spatial resolution & overage	Temporal resolution& coverage	Format					
Lightning	-Amount of lightning strikes per year	Regional classes	Distribution of lightening	Per decade	Мар					
Wind gusts	Max gusts	wind related standards	Regional classes e.g. 10 that cover full spread	Decadal	Мар					
Diurnal temperature difference	diurnal temperature	All Temperature related standards	Classes	Decadal	Мар					
Temperature range	Difference between max. and min. yearly temp	All T related standards	Classes	Decadal	Мар					
Heavy rain after drought	Heavy precipitation days after dry period. e.g. number of times when average maximum dry period is followed by T1 hourly rainstorm	Structural	Classes	Decadal	Мар					
Hottest and coldest day per month	Average hottest day per month	T related	Classes	Decadal Map	Мар					
Coldest and hottest night per month	Average coldest night per month	T related	Classes	Decadal	Мар					
Hot days	Days above 25, 30 Celsius and days above current 90,95 percentile	T related	Classes	Decadal	Мар					
Max number of days w/o precipitation	T1, T2, T5, T10, T25, T50, T100events	Subsidence, sag, stability	Classes	Decadal	Мар					
Precipitation deficit	T1, T2, T5, T10, T25, T50, T100 events for cumulative rainfall anomaly for meteorological year	Subsidence, sag	Classes	Decadal	Мар					
Peak river flow	Change in 90, 95, 99 percentile	Flooding of tracks, use of bridges	Classes	Decadal	Мар					
Hourly data on precipitation	Hourly T10, T25, T50, T100, T200,T250, T500 rainstorms		Classes	Decadal	Мар					

Railway sector – Risk ^{••} UNPACKING CLIMATE IMPACT CHAINS assessment

Many climate impacts of concern

• Yet to decide on one for the risk assessment.

Reflecting forward

- Policy relevance:
- Real estate:
- 1. For investment decisions

2. Might facilitate and reduce the difficulties in obtaining flood insurance in the Netherlands

- Railway:
- 1. Might lead to a standardised operational and design metrics
- Improving the impact chain methodology
- Co-production as a central innovation to advance the method
- Co-production and uncertainty management

Thank you